skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Paldi, Robynne_L"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract To investigate the role of interlayers on the growth, microstructure, and physical properties of 3D nanocomposite frameworks, a set of novel 3D vertically aligned nanocomposite (VAN) frameworks are assembled by a relatively thin interlayer (M) sandwiched by two consecutively grown La0.7Sr0.3MnO3(LSMO)‐ZnO VANs layers. ZnO nanopillars from the two VAN layers and the interlayer (M) create a heterogeneous 3D frame embedded in the LSMO matrix. The interlayer (M) includes yttria‐stabilized zirconia (YSZ), CeO2, SrTiO3, BaTiO3, and MgO with in‐plane matching distances increasing from ≈3.63 to ≈4.21 Å, and expected in‐plane strains ranging from tensile (≈8.81% on YSZ interlayer) to compressive (≈–6.23% on MgO interlayer). The metal‐insulator transition temperature increases from ≈133 K (M = YSZ) to ≈252 K (M = MgO), and the low‐field magnetoresistance peak value is tuned from ≈36.7% to ≈20.8%. The 3D heterogeneous frames empower excellent tunable magnetotransport properties and promising potentials for microstructure‐enabled applications. 
    more » « less